Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Adicionar filtros

Tipo de documento
Intervalo de ano
1.
biorxiv; 2023.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2023.10.12.561993

RESUMO

Monitoring in vivo viral dynamics can improve our understanding of pathogenicity and tissue tropism. For positive-sense, single-stranded RNA viruses, several studies have attempted to monitor viral kinetics in vivo using reporter genomes. The application of such recombinant viruses can be limited by challenges in accommodating bioluminescent reporter genes in the viral genome. Conventional luminescence also exhibits relatively low tissue permeability and thus less sensitivity for visualization in vivo. Here we show that unlike NanoLuc bioluminescence, the improved method, termed AkaBLI, allows visualization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Syrian hamsters. By successfully incorporating a codon-optimized Akaluc luciferase gene into the SARS-CoV-2 genome, we visualized in vivo infection, including the tissue-specific differences associated with particular variants. Additionally, we could evaluate the efficacy of neutralizing antibodies and mRNA vaccination by monitoring changes in Akaluc signals. Overall, AkaBLI is an effective technology for monitoring viral dynamics in live animals.


Assuntos
COVID-19 , Infecções por Coronavirus
2.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.02.22.481436

RESUMO

Mutations continue to accumulate within the SARS-CoV-2 genome, and the ongoing epidemic has shown no signs of ending. It is critical to predict problematic mutations that may arise in clinical environments and assess their properties in advance to quickly implement countermeasures against future variant infections. In this study, we identified mutations resistant to remdesivir, which is widely administered to SARS-CoV-2-infected patients, and discuss the cause of resistance. First, we simultaneously constructed eight recombinant viruses carrying the mutations detected in in vitro serial passages of SARS-CoV-2 in the presence of remdesivir. Time course analyses of cellular virus infections showed significantly higher infectious titers and infection rates in mutant viruses than wild type virus under treatment with remdesivir. Next, we developed a mathematical model in consideration of the changing dynamic of cells infected with mutant viruses with distinct propagation properties and defined that mutations detected in in vitro passages canceled the antiviral activities of remdesivir without raising virus production capacity. Finally, molecular dynamics simulations of the NSP12 protein of SARS-CoV-2 revealed that the molecular vibration around the RNA-binding site was increased by the introduction of mutations on NSP12. Taken together, we identified multiple mutations that affected the flexibility of the RNA binding site and decreased the antiviral activity of remdesivir. Our new insights will contribute to developing further antiviral measures against SARS-CoV-2 infection.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
3.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.10.19.21265062

RESUMO

Among a single COVID-19 cluster population from the end of March through April 2021 in Asahikawa, we experienced the cases in which patients manifested severe clinical symptoms compared to patients who were infected before that. A hundred three patients (age range: 65 to 89 years old) enrolled in this study were divided into two groups, group A: the patients infected from November 2020 to March 2021, and group B: the patients in this cluster population. The mortality rates were 6.1% in group A and 16.2% in group B (OR: 2.97, 95%CI: 0.65-15.38). For the severity of disease, the patients in group B reached to the clinical state which requires higher oxygen flow rate more quickly (mild; p=0.892, moderate; p=0.117, severe; p=0.029). Whole viral genome sequences revealed five non-synonymous mutations by comparison of the isolates with each group. Of these, four were on NSPs including nsp3, 6 and 15, and one was on S protein located near the C-terminus, suggesting that mutations on NSPs could be responsible for adverse clinical outcomes in COVID-19 patients.


Assuntos
COVID-19
4.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.04.02.438288

RESUMO

During the current SARS-CoV-2 pandemic that is devastating the modern societies worldwide, many variants that naturally acquire multiple mutations have emerged. Emerging mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has recently been investigated, that to human leukocyte antigen (HLA)-restricted cellular immunity remains unaddressed. Here we demonstrate that two recently emerging mutants in the receptor binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429) and Y453F (in B.1.298), can escape from the HLA-24-restricted cellular immunity. These mutations reinforce the affinity to viral receptor ACE2, and notably, the L452R mutation increases protein stability, viral infectivity, and potentially promotes viral replication. Our data suggest that the HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes, and the escape from cellular immunity can be a further threat of the SARS-CoV-2 pandemic.

5.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.13.426436

RESUMO

There is an urgent need to limit and stop the worldwide coronavirus disease 2019 (COVID-19) pandemic via quick development of efficient and safe vaccination methods. Plasmid DNA vaccines are one of the most remarkable vaccines that can be developed in a short term. pVAX1-SARS-CoV2-co, which is a plasmid DNA vaccine, was designed to express severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein. The produced antibodies lead to Immunoreactions against S protein, anti-receptor-binding-domain, and neutralizing action of pVAX1-SARS-CoV2-co, as confirmed in a previous study. To promote the efficacy of the pVAX1-SARS-CoV2-co vaccine, a pyro-drive jet injector (PJI) was employed. PJI is an injection device that can adjust the injection pressure depending on various target tissues. Intradermally-adjusted PJI demonstrated that pVAX1-SARS-CoV2-co vaccine injection caused a strong production of anti-S protein antibodies, triggered immunoreactions and neutralizing actions against SARS-CoV-2. Moreover, a high dose of pVAX1-SARS-CoV2-co intradermal injection via PJI did not cause any serious disorders in the rat model. Finally, virus infection challenge in mice, confirmed that intradermally immunized (via PJI) mice were potently protected from COVID-19 infection. Thus, pVAX1-SARS-CoV2-co intradermal injection via PJI is a safe and promising vaccination method to overcome the COVID-19 pandemic.


Assuntos
COVID-19 , Infecções por Coronavirus , Infecções Tumorais por Vírus
6.
biorxiv; 2021.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2021.01.14.426726

RESUMO

We present a structure-based model of phosphorylation-dependent binding and sequestration of SARS-CoV-2 nucleocapsid protein and the impact of two consecutive amino acid changes R203K and G204R. Additionally, we studied how mutant strains affect HLA-specific antigen presentation and correlated these findings with HLA allelic population frequencies. We discovered RG>KR mutated SARS-CoV-2 expands the ability for differential expression of the N protein epitope on Major Histocompatibility Complexes (MHC) of varying Human Leukocyte Antigen (HLA) origin. The N protein LKR region K203, R204 of wild type (SARS-CoVs) and (SARS-CoV-2) observed HLA-A*30:01 and HLA-A*30:21, but mutant SARS-CoV-2 observed HLA-A*31:01 and HLA-A*68:01. Expression of HLA-A genotypes associated with the mutant strain occurred more frequently in all populations studied. ImportanceThe novel coronavirus known as SARS-CoV-2 causes a disease renowned as 2019-nCoV (or COVID-19). HLA allele frequencies worldwide could positively correlate with the severity of coronavirus cases and a high number of deaths.


Assuntos
Síndrome Respiratória Aguda Grave , Morte , COVID-19
7.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423358

RESUMO

SARS-CoV-2 infection causes severe symptoms in a subset of patients, suggesting the presence of certain unknown risk factors. Although antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike have been shown prevent SARS-CoV-2 infection, the effects of antibodies against other spike protein domains are largely unknown. Here, we screened a series of anti-spike monoclonal antibodies from COVID-19 patients, and found that some of antibodies against the N-terminal domain (NTD) dramatically enhanced the binding capacity of the spike protein to ACE2, and thus increased SARS-CoV2 infectivity. Surprisingly, mutational analysis revealed that all the infectivity-enhancing antibodies recognized a specific site on the surface of the NTD. The antibodies against this infectivity-enhancing site were detected in all samples of hospitalized COVID-19 patients in the study. However, the ratio of infectivity-enhancing antibodies to neutralizing antibodies differed among patients. Furthermore, the antibodies against the infectivity-enhancing site were detected in 3 out of 48 uninfected donors, albeit at low levels. These findings suggest that the production of antibodies against SARS-CoV-2 infectivity-enhancing site could be considered as a possible exacerbating factors for COVID-19 and that a spike protein lacking such antibody epitopes may be required for safe vaccine development, especially for individuals with pre-existing enhancing antibodies.


Assuntos
COVID-19
8.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.11.05.369264

RESUMO

The widespread occurrence of SARS-CoV-2 has had a profound effect on society and a vaccine is currently being developed. Angiotensin-converting enzyme 2 (ACE2) is the primary host cell receptor that interacts with the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Although pneumonia is the main symptom in severe cases of SARS-CoV-2 infection, the expression levels of ACE2 in the lung is low, suggesting the presence of another receptor for the spike protein. In order to identify the additional receptors for the spike protein, we screened a receptor for the SARS-CoV-2 spike protein from the lung cDNA library. We cloned L-SIGN as a specific receptor for the N-terminal domain (NTD) of the SARS-CoV-2 spike protein. The RBD of the spike protein did not bind to L-SIGN. In addition, not only L-SIGN but also DC-SIGN, a closely related C-type lectin receptor to L-SIGN, bound to the NTD of the SARS-CoV-2 spike protein. Importantly, cells expressing L-SIGN and DC-SIGN were both infected by SARS-CoV-2. Furthermore, L-SIGN and DC-SIGN induced membrane fusion by associating with the SARS-CoV-2 spike protein. Serum antibodies from infected patients and a patient-derived monoclonal antibody against NTD inhibited SARS-CoV-2 infection of L-SIGN or DC-SIGN expressing cells. Our results highlight the important role of NTD in SARS-CoV-2 dissemination through L-SIGN and DC-SIGN and the significance of having anti-NTD neutralizing antibodies in antibody-based therapeutics.


Assuntos
Pneumonia , Síndrome Respiratória Aguda Grave , COVID-19
9.
ssrn; 2020.
Preprint em Inglês | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3714847

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). While the development of specific treatments and a vaccine is urgently needed, functional analyses of SARS-CoV-2 have been limited by the lack of convenient mutagenesis methods. In this study, we established a PCR-based, bacterium-free method to generate SARS-CoV-2 infectious clones. Recombinant SARS-CoV-2 could be rescued at high titer with high accuracy after assembling 10 SARS-CoV-2 cDNA fragments by circular polymerase extension reaction (CPER) and transfection of the resulting circular genome into susceptible cells. Notably, the construction of infectious clones for reporter viruses and mutant viruses could be completed in two simple steps: introduction of reporter genes or mutations into the desirable DNA fragments (~5,000 base pairs) by PCR and assembly of the DNA fragments by CPER. We hope that our reverse genetics system will contribute to the further understanding of SARS-CoV-2.Funding: This work was supported from the Ministry of Health, Labor and Welfare of Japan and the Japan Agency for Medical Research and Development (AMED; http://www.amed.go.jp/) (JP20wm0225002, JP20he0822006, JP20fk0108264, JP20he0822008, JP20wm0225003, JP20fk0108267, JP19fk0108113, and JP20wm0125010), and the Japan Society for the Promotion of Science KAKENHI (JP19K24679). S. Torii is supported by a JSPS Research Fellowships for young scientists (https://www.jsps.go.jp/english/e-grants/) (19J12641). Conflict of Interest: We have no conflicts of interest to declare.Ethical Approval: All experiments involving SARS-CoV-2 were performed in biosafety level-3 laboratories, following the standard biosafety protocols approved by the Research institute for Microbial Diseases at Osaka University.


Assuntos
COVID-19 , Discinesia Induzida por Medicamentos , Síndrome Respiratória Aguda Grave
10.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.09.23.309849

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as the causative agent of coronavirus disease 2019 (COVID-19). While the development of specific treatments and a vaccine is urgently needed, functional analyses of SARS-CoV-2 have been limited by the lack of convenient mutagenesis methods. In this study, we established a PCR-based, bacterium-free method to generate SARS-CoV-2 infectious clones. Recombinant SARS-CoV-2 could be rescued at high titer with high accuracy after assembling 10 SARS-CoV-2 cDNA fragments by circular polymerase extension reaction (CPER) and transfection of the resulting circular genome into susceptible cells. Notably, the construction of infectious clones for reporter viruses and mutant viruses could be completed in two simple steps: introduction of reporter genes or mutations into the desirable DNA fragments (~5,000 base pairs) by PCR and assembly of the DNA fragments by CPER. We hope that our reverse genetics system will contribute to the further understanding of SARS-CoV-2.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA